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We study the relation between the microcanonical, canonical, and grand 
canonical ensembles in the thermodynamic limit when the system becomes 
infinite. They are equivalent if there is only one phase in the system. In 
general it is shown that there is a unique limit of the microcanonical state 
being a mixture of pure phases if the microcanonical restrictions determine 
the volume fractions of the phases uniquely, and then the Gibbs phase rule 
is valid. In this context we show how to define theset of order parameters 
associated with the state of the system in a natural way. 
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1. I N T R O D U C T I O N  

In this paper  we study the relation between a restricted, microcanonical,  
and the corresponding unrestricted, grand canonical, probabili ty law 
(ensemble, state) for  a system in a finite container described by classical 
statistical mechanics. We want to investigate how these ensembles are 
related in the the rmodynamic  limit when the volume tends to infinity and 
the values o f  the variables which are restricted are propor t ional  to the 
volume. The result indicated heuristically in many  textbooks that  for a large 
system described by a microcanonical  law the state o f  a small subsystem is 
given by the corresponding grand canonical  law is proved in the following 
sense: Consider  the state o f  a small subvolume whose position is chosen at 
r andom with uniform distribution in the large container. Then if there is no 
phase transit ion for the given values o f  the restricted variables this state has 
a unique limit equal to the unique invariant equilibrium state defined by the 
parameters  o f  the grand  canonical  state, and it is also the limit o f  the latter 
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state. I f  there is a phase transition, so there is more than one invariant 
equilibrium state, each being a mixture of extremal ones, i.e., states describing 
the pure phases, then we have the following situation: There is a unique 
limit of the state of  the subvotume being a mixture of  the states of the pure 
phases if the microcanonicat restrictions determine the mixture completely, 
and there is only a finite number  of  pure phases. In  this case this number is at 
most  one plus the number of  restrictions (Gibbs phase rule.) 

This indicates that the weights in the mixture are to be interpreted as 
the fractions of  the total volume filled by the various pure phases, because 
if these occupy macroscopic regions the probability that the subvolume falls 
inside a region filled by a pure phase is proportional to its volume fraction, 
and the probability that it overlaps with several phases is negligible when the 
volume is large. 

We also show that in this context one obtains a natural definition of the 
order parameters  associated with the phase transition. One can also study 
the limit of a mixed, canonical, ensemble, where some of the restrictions are 
relaxed and taken care of by the grand canonical parameters. It then follows 
that any restrictions not defined by the order parameters can be relaxed 
without changing the unique limit of  the microcanonical state. For  simplicity 
we consider only classical lattice systems for which the theory of invariant 
equilibrium states is well developed. Our proofs are based on the variational 
characterization of these and on general arguments based on the convexity 
properties of the entropy and pressure, so they are certainly valid for more 
general systems. 

2. BASIC D E F I N I T I O N S  A N D  FACTS 

We consider a classical lattice system on ~a = L with a finite set S of 
possible states at each lattice site, i.e., the configuration space is X = S L. 
Configurations are denoted by x, y, etc. and xA denotes the restriction of 
x ~ X to the subset A c L. We also consider configurations defined only on 
subsets of L, and for such a configuration x, x denotes its domain of definition. 
XA is the set of  x with x = A, A c L, and X I is the set of all x with finite 
domain, [x[ < oe. For  any p ~ L, Tpx denotes the configuration obtained by 
translating x by p. 

A potential is a translation-invariant function U(x) defined for x ~ X I. 
For A finite ~ L  and x E XA the total "U-energy"  of x is 

UA(x) = "s u(xA) 
A~_A 

We consider as is usual the Banach space B of potentials with finite norm 
defined by 

LIu[I = ~ IA[ -~ sup IU(x)l 
A~O X~XA 
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in which the set B r of potentials with finite range is dense. U is of finite 
range if and only if there is a finite set R : L so that U(x) = 0 unless 
x c TpR for some p e L. 

In terms of II ull we have the following bound for UA(x): 

IVA(x)l < Z Ib(x2j = Z Z fAl-:lv(  )l 
A ~ A  A ~ A  p ~ A  

<. JAI-:JU( .)I < JAJ.rlUXl 
p G A  p ~ A  

so JAI-:U~(x) < [[U[[ for all A, and x ~  XA. 
A restricted probability law for a finite container A is defined by giving 

a finite number of potentials U: .... , Um ~ B and giving equal probability to 
all x e X having nearly fixed values of U:A(x),..., UmA(X) : 

Let I be a small, open neighborhood of a point u ~ R m, and let ZA(I) = 
number o f x  e XA such that ]A I - :UA(x)  ~ I. Then the restricted law is given by 

p A ( x ; I )  = {0 Z x : ( / )  otherwiseif ] A I - 1 U A ( x ) e I  

m 

Ua(x) = (U1A(X),-.., UrnA(X)) G R m, a. U = Z a~Ui, etc. 
1 

We consider a "  macroscopically thin energy shell" defined by 1 A] - :  UA(x) e I, 
and we will consider the limit A -+ oo and then I - +  u ~ R m. This is physically 
natural and mathematically simpler than having A - +  o% IAI-:g~(x)---> u 
simultaneously. 

For  definiteness we always take A to be a parallelepiped, and A--~ o9 
means that all the sides of A go to infinity. 

The unrestricted probability law corresponding to the one defined above 
is defined by introducing m intensive parameters (a:,..., a,~) = a e R m and 
relaxing the constraints: 

p A ( x ; a ) = Z 2 : ( a ) e x p [ - - a .  UA(x)] for x e X A  
with 

ZA(a) = ~, exp[-a. UA(x)] = f exp[-[Al(a.u)]ZA(du) 
x G X  A 

In general, for any V ~ B, not necessarily of the form a- U, we also define 

pA(x; V) = Z 2 : ( V )  e x p [ -  VA(x)] for x G XA 

with 

ZA(V)  = ~ exp[-- VA(x)] 
x ~ X  A 

[We make the abuse of notation ZA(a) = Za(a.  U), etc., when there is no 
risk of  confusion.] 
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As a functional on B, log ZA(V) is a generating functional for the state 
of subsystems located at random with a uniform distribution over A as 
follows: Put gA(V) = ] A] - 1 log ZA(V); then for U ~ B 

d 
--gA'(V, U) = -- -~gA(V + AU) I = ( [ A I - ~ U ~ ( x ) ) A  

k,=O 

= IA1-1 ~ <U(xA)>A = IAI-~ ~ U(y)pA(X, = y; V) 
A-.GA u 

Put 

PA(Y; V ) =  {~a(xy = y; V) otherwiseif y ___ A 

(These are the "cylinder probabilities" of the state on Xa. Any, state on X 
is uniquely specified by its cylinder probabilities for y EXr.)  

Using the same change of summation as above, we then get 

-gy(v, u) = IA1-1 ~ ~ IA[ -1 ~ U(y)p^(y; V) 
P ~ A  p ~ A  y = A 

= IAI-1 ~ ~ IB1-1 ~ . .  U(y)pA(y; V) 
p f f A  O~B y = T p B  

= Z IB[ -1 Z IAI -~ Z g(x)p~(T,x; V) 
O~B x = B p~A 

= ~ lxl-~g(x)pA(x; v) = (p~(.; v), u) 
x=~O 

if  we put 

pA(x; v) ~ IAl-1 ~ pA(r~x; V) 
p~A 

(pA, u) -- ~ Ixl-l~(x)U(x) 
x ~ 0  

For  any finite A ~ 0 the ffA(x; V) with x e Xa describe the probability law 
for the state in a subvolume TpA chosen at random in A, so they a re  the 
basic probabilities we want to study. When V = a. U, a and u are said to 
correspond if the unrestricted law is centered so that (]AI-IUA(x)) = u, 
i.e., if --gA'(a) = u. 

Now, gA(V) is convex in V, and hence gA'(V, U) defines a subgradient to 
gA at V: 

gA(V + U) - ga(V) > gA'(V, U) = -(/3A(. ; V), U) for all U~ B 

We recall the following basic facts about the thermodynamic limit of g,~ 
(Ref. 9): limA_.oo gA(V) = g(V) exists and is a bounded, convex function on 
B; gA(V) <<. [IV[I + loglS[; and ]g^(V) - gA(U)[ <~ ]IV - Utl. Any limit 
if(x; V) of the ffA(x; V), x ~ Xs for some subsequence A--> 0% defines a 
subgradient to g at Is, and hence if g is differentiable at V, so there is only 
one such subgradient, all such limits are the same, i.e., l ima~o fia(x; V) = 
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fi(x; V) exists for all x ~ X s. The fi(x; V) define cylinder probabilities for an 
invariant state on iV. 

We also recall the following facts about invariant equilibrium states: (3,9~ 
The unrestricted ensemble in a finite set A can be characterized by the Gibbs 
variational principle: For  any probability distribution PA on XA let 

H(pa)  = -- ~ pA(X) 1ogpa(x) 
x ~ X  A 

Then pA(X; V) is the distribution that maximizes 

H(pA) -- (VA(x))A = H(pA) -- ~ VA(x)pA(x) 
X ~ X A  

and the value of the maximum is log ZA(V). An invariant equilibrium state 
on X defined by invariant cylinder probabilities p(x), x ~ Xr, is characterized 
by an analogous maximization: 

h(p) = lira - I A [  -1 ~ p(x) logp(x) 
A --~ co x ~  X A 

and 
lim IAI-1 ~ p(x)VA(x) = (p, V) 

are always defined for any invariant state, and m ax p (h (p ) -  (p, V)) is 
always attained for some p and equal to g(V). The maximal p's are called 
invariant equilibrium states and form a compact convex set of invariant 
states which is a Choquet simplex, so that any such state can be uniquely 
represented as a mixture of extremal such states: 

q(de) 
v 

These extremal States Pe are ergodic and describe "pure  phases" for the 
system: Any equilibrium state p for V defines a subgradient to g at V: 

g(U) - g(V)  = maxp(h(p) - (p, U)) - h(p) + (p, V) 
>1 h(p) - (p, U) - h(p) + (p, V) = - ( p ,  U -  v )  

and for our purposes it will be important to know that any subgradient to 
g at V defines an invariant equilibrium state, so these are precisely the sub- 
gradients to g at V. (3~ 

Example. Our basic example is the Ising model, the only one for which 
one knows precisely which are the equilibrium states for all parameter 
values. It has S = { - 1 ,  + 1}, m = 2, and U1A(x) is the total interaction 
energy, U2A(X) is the total magnetization. We have Ul(x) # 0 only if x is 
a pair of  nearest neighbors {p, q} on L and then Uz(x) = xv .x  q. Now, 
U2(x) # 0 only if x is a single point p ~ L, and then Uz(x) = x~. For  the 
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unrestr icted ensemble (a : ,  a2) = (/3, -/3h), where/3 is the inverse t empera ture  
( k T ) - :  and h the external field. In  Refs. 4 and 6 it is shown for  d = 2 tha t  
for  h r 0 there is precisely one invariant  equil ibrium state and also for  
h = 0, /3 ~</3o, /3c being the critical tempera ture .  Fo r  /3 >/3c there are 
precisely two ext remal  invariant  equil ibrium states p~ obtained f rom the - 
unique state for  h r 0 by passing to the limit h ~ +_ 0, respectively. The  p 
are related by the symmet ry  x ~ - x  and have average magnet izat ion 
+ m*(/3) -7: 0, respectively. 

3. T H E  T H E R M O D Y N A M I C  L IM IT  FOR T H E  R E S T R I C T E D  
E N S E M B L E  

The  restricted probabi l i ty  law was expressed in te rms of  ZA(I), I c R m, 
defined above.  Let  us more  generally define ZA(I, a) as 

ZA(I, a) = lal-'-~-" )~1~u,x e x p [ - a .  UA(x)] 

XGX A 

Then  we have ZA(I, O) = ZA(I) and ZA(R m, a) = ZA(a). The  the rmodynamic  
limit of  ZA(I, a) can be described as follows: limA_,~o]A]-: logZA(l ,  a) = 
s(I, a) exists if  I is open convex : R m (or a finite union of  such sets), s(/, a) is 
bounded above if I is bounded,  but  can be equal  to - oo. I t  has the following 
fo rm:  s(I, a) -- sup~1(s(u) - a .  u) with s(u) = inf1~ s(I, 0). The  ent ropy func- 
t ion s(u) is concave,  upper  semicont inuous (u.s.c.), and bounded  above by 
loglS ]. It  is the unique concave u.s.c, funct ion representing s(I, a) in the above 
fashion. (The proofs  of  these facts are given in detail in Refs. 3 and 5. Actually 
a s tronger  condi t ion on the potential  than  U, G B is used there:  U~ G B r or  U, 
being " t e m p e r e d , "  but  p robab ly  this is not  necessary.) 

In par t icular  for  I = R m we get 

s (R  m, a) = g(a) = sup~(s(u) - a.  u) 

so s and g are "con juga te  func t ions"  or Legendre t ransforms of  each other. 
We recall the following facts abou t  this correspondence:  (5.8> 

s(u) = infa(g(a) + a.u) 

g(a) is the minimal  g such that  the affine function g + a.u >1 s(u) for  all u 
(Fig. 1) and s(u) is the maximal  s such tha t  s - a.u >1 g(a) for  all a (Fig. 2). 
Now,  a and u cor respond  in sup,,  i.e., sup ,  is a t ta ined at u i f f they cor respond  
in infa, and this happens  iff they define support ing planes to s(u) and g(a), 
respectively, as in the figures. There  is a unique u corresponding to a iff s 
has no linear segment  with slope a in its graph. Conversely there is a unique 
a corresponding to u iff s is differentiable at  u, and then a = s'(u), or iff g 
has no linear segment  in its graph with slope - u .  
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8 '  

Fig.  1 "v, ),u~ 

In  Re/'. 2 it is shown that  g(V) is strictly convex in V so g(a) = g(a. U) 
is also strictly convex, and there is hence a unique a corresponding to u if 
s(u) > - o o  if the U~ are linearly independent.  Since we have seen that  
ZA([) = 0 if  I is disjoint f rom the compact  region where lu~] ~< t] U~I], i = 
1,..., m, then s ( u ) = - o o  outside o f  this region. This means that  sup~ is 
always attained for some u, because an u.s.c, function always takes on a 
maximal  value on a compact  set. 

Let us now see how the entropy function can be used to study the 
restricted ensemble in the limit A - ~  oo, I - +  u. Suppose that  we want to 
study the distribution o f  some other  variable UoA(X) for Uo G Bs, e.g. Then 
we include Uo a m o n g  U: ..... Um and define Za(I0 x I),  etc., as before by 
the restriction IAI-:(UoA(x), UA(x)) e Io x L Io c R:, I c R ~, and get 

S(Io x I )  = suP~o~lo;~ l S(Uo, u) 

[We use the same symbol for the extended function s(uo, u), etc., without  
risk o f  confusion.] Then we have 

ZA(Io x I)  _ ZA(Io x I)  
pa(lAl-:WoA(X) G/o; I )  --- PA(Io; I )  = ZA(R: x I)  ZA(I) 

so that  as A ~ oo 

[ A I - :  logpA(Io; I)--~S(Io x I ) -  s(R: x I ) =  S(Io x 1 ) -  s(I)  

when s(I)  > - o o .  It  then follows that  as I - +  u 

lira lira I A I - :  logpa(Io; I )  = sup S(Uo, u) - sup S(Uo, u) 
I " * U  A -"* r l t 0 G l 0  It  0 

-- s(Io, u) -- s(R:, u) 

Fig.  2 a~ > a~ 
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when 
s(u) = sup S(Uo, u) > - o o  

it o 

[Consider, e.g., the first term as a function of  I :  

S(Io • I )  = sup(sup s(uo, u)) = sup S(Io, u) 
u ~ I  UOGIO "U~I 

Hence S(Io, .) represents S(Io • .), so if it is u.s.c, it will be given by 
i n f ~  s(Io, I). This is easy to check using the fact that  S(Uo, u) = - ~  when 

luol > IIUoll.' q 
We now see directly that  all the probabili ty mass of  the distribution 

pA(Io;I) will be concentrated at those values o f  uo for which sUP,o S(Uo, u) 
is at tained: Let M = [Uo', uo"] be this maximal  interval. Then if 1o is disjoint 
f rom M, S(Io, u) - s (R  1, u) < 0, so 

lira IA[-1 logp^(Io;  I )  < 0 if I ~ u and lim PA(Io; 1) = 0 
A--* co A-*oo  

Since [AI-IUoA(X) is bounded,  this also means that  any limiting value of  
<IA[-  1UOA(X)>A must  be contained in M. In  part icular  if M consists of  only 
one point  uo, this average converges to Uo as A ~ 0% I - +  u. It  also follows 
that  any limit p(x), x ~ X~, of  the cylinder probabilities/~A(x; 1) defines an 
equilibrium state (Such limits always exist by the compactness o f  the set o f  
states on X.) 

I . e m m a  1. I f  a corresponds to u in the duality, i.e., i fg(a)  = s(u) - a. u 
and V = a. U, then any limit p(x), x ~ Xr, of  the/SA(x; I )  defines a sub- 
gradient  to g at V and hence an equilibrium state for V. 

ProoL What  has to be shown is that, for  any ao and Uo, g(a. U + aoUo) 
- g(a .  U)  <<. - a o ( p ,  Uo), i.e., g(ao, a) - g(0, a) >1 -aouo, Uo = (p,  Uo). 

This follows because we have g(ao, a) >1 s(uo, u) - aoUo - a. u, g(O, a) 
= g(a) = s(u) - a.u, and s(u) = S(Uo, u) since sup,  o S(Uo, u) is attained at 
such a Uo. 

Hence if there is no phase transit ion for V = a- U so g is differentiable 
at V and there is a unique equilibrium state, this is equal to the limit o f  both  
the restricted and the unrestricted states. I.e., we have equivalence of  ensembles 
when there is no phase transition. 

We now consider the case when there are several equilibrium states for 
V = a .U .  As we have just seen, any limit p(x) of  the fiA(x; 1) defines an 
equilibrium state and is hence of  the form p = fEv Pe q(de), and we have 

= lim(lAl-~U~(x)>A = (p, U~) = ( _  (Pc, U~)q(de) for i =  1 U i  m 
v 
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Hence if these equations determine q(de) uniquely, p(x) is uniquely deter- 
mined and equal to the limit of fiA(x, I) for all x ~ X~. This is our main 
result: 

T h e o r e m  1. Given V =  a.U. Then the following statements are 
equivalent: 

A. For  all u corresponding to a in the duality and for all Uo ~ Bs, 
s(uo, u) has a unique u0 giving sUPuo s(uo, u). 

B. There are only finitely many pure phases for V, {Pc, e = 1,...,f}, 
and the equations 

f I 

u , =  ~(p~ ,U~)qe ,  i =  1,...,m; 1 = ~ q e  
1 1 

determine the mixture {qe} uniquely for all u corresponding to a. 
If  B holds, then f ~< m + 1 (Gibbs phase rule) and 

f 

lira lira/~A(x; I) = ~pe(x)q~,  x ~ XI 
l ~ u  A.--*QO 1 

Proof. A => B: I f  the equations 

= ( (pe, U,)q(de), i =  1 .... ,m;  1 = ( q ( d e )  U~ 
J E  v ~ v  

had two different solutions q', q" for some u corresponding to a, then these 
would define different equilibrium states or subgradients p', p" to g at V. 
I.e., for some Uo e B r we would have uo' = (p', Uo) < (p", Uo) = Uo" and 

g(aoUo + b. V + V) - g (V)  >1 -ao(p ,  Uo) - b .(p,  U) 

both for p',  p", i.e., 

g(ao, b + a) - g(O, a) >1 -aouo -- b. u 

both for Uo', Uo". I.e., both (Uo', u) and (uo", u) would correspond to (0, a) 
and S(Uo, u) would be maximal both for Uo', uo" against the assumption. 
We hence see that (u;us = fzv(Pe'  U~)q(de)} is a simplex in R ~ with 

extreme points (pe, U), e eEv .  Hence Ev has to be finite with at most 
f ~ m + 1 elements. 

B ~ A: Any Uo such that S(Uo, u) is maximal as we have seen defines a 
subgradient - (uo ,  u) to g a t  (0, a), i.e., 

g(aoUo + b. U + V) - g(V)  >>- -aouo - b .u  
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i.e., we have a subgradient in the subspace of B spanned by (Uo .... , Urn). 
By the Hahn-Banach theorem this can be extended to a subgradient to g 
at V in all of B, i.e., there is an equilibrium state p = ~{ p~q~ such that 
(p, U,) = u~, i = 0, 1,..., m. The equations for i = 1,..., m determine the q~ 
uniquely, and then uo is uniquely given by uo = ~{ (Pe, Uo)qe. 

4. THE DEFIN IT ION OF THE O R D E R  P A R A M E T E R S  

Let us consider the structure of the equations determining the mixture: 

t f 

u ,=  ~ (pe, Ui)qe, i =  1 .... ,m;  1 = ~ qe 
1 1 

We assume without loss of  generality that the U, are linearly independent. 
If, for some i, (Pe, U~) = u~ for all e, then the corresponding equation in the 
above system is redundant for determining the q~, so only the remaining 
equations serve this purpose. This happens iff g is differentiable in the 
direction U~ at V = a. U according to the following lemma: 

L e m m a  2. g is differentiable in a direction W at V iff (p, W) has a 
constant value w for all subgradients to g at V, and then w = -g ' (V ,  W). 
Hence these directions form a linear subspace, D, of B. 

Proof. I f  g'(V, W) is defined and - p  is a subgradient, we have 

g(V + bW) - g(V) >t -b (p ,  W) for all b 

and hence (p, W) = -g ' (V ,  W). 
Conversely, if - w  is any subgradient in the direction IV, i.e., if 

g(V + bW) - g(V) >1 - b w  for all b, then the Hahn-Banach result tells us 
that  there is a subgradient - p  with w = (p, W). Hence w can take only o n e  
value if (p, W) is independent o fp .  Hence -w:L = g~'(V, W), the right and 
left derivatives in the direction W are equal because they both define sub- 
gradients in the direction W, and g'(V, W) is defined and equal to their 
common  value. 

In the space spanned by U1,..., Um we can then suppose that, e.g., 
U~+I,..., U,~ span its intersection with D, so that (Pc, U0 = u~ for all e and 
i = n +  1,..., m, and only the remaining equations for i = 1 .... , n serve to 
determine the qe. These equations are linearly independent, since if we had 
~,'I c~(p~, Ui) + c = 0 for all e we would have ~ c~U~ E D, and U~+I .... ,Um 
would not be a basis for the intersection with D. Hence the equations have 
full rank a n d f  -= n + 1. 

/ 
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The variables U:A(x) ..... UnA(x) should be called the "order  parameters" 
at V = a. U, i.e., those variables that in addition to a have to be fixed in 
order that the state should be completely determined. (They are of course 
only determined up to linear equivalence.) 

5. T H E  T H E R M O D Y N A M I C  L I M I T  FOR THE M I X E D  E N S E M B L E  

It is also of interest to consider an intermediate ensemble where some 
variables U:A(x) ..... UreA(x) take nearly fixed values and the probability density 
for x e X,x is proportional to e x p [ - b  WA(x)] for some other variable WA(x).  

For  example, in the canonical ensemble Wa(x) is the total energy and 
the number of particles is fixed. 

We can express the distribution of some other variable UoA(X) in this 
ensemble as before if we also include W among U0,..., Um and consider 
ZA(lo x I x J,  ao, a, b) = 

e x p [ - a o U o A ( X )  --  a .  UA(x) -- bWA(x)]  

x~x, = Ia l - : (Uo~(X) ,  VA(x), WA(x))Io x I x I 

The probability distribution of [A I -:UoA(X) is then given by 

p~(IAI-:  Vo,A(x) e /0 ;  I, b) - P~(Io; I, b) 

ZA(Io x I x R: ,  O, O, b) _ Z f f ( I o  x I )  
Z A ( R :  x I x R 1, 0, O, b) Z f f ( I )  

making the same abuse of notation as before. 
As before, we have 

lira [A]-I  logZA(Io • I x J,  ao, a , b )  
A--* oo 

= S(Io x I x J, ao, a ,b )  = sup (S(Uo, U, W) - aoUo - a . u  - b . w )  
~OGIo 

U~l;W~J 

with an extended entropy function S(Uo, u, w) having the same properties 
as before and conjugate function g(ao Uo + a.  U + b W )  =- g(ao,  a, b) = 

suP~o.~,w(S(Uo, u, w) - aouo - a . u  - bw). 
For  the limit of Z f f ( I o  x I )  we then have 

lira [Al-:logZAb(Io x I )  =-- sb(Io x I )  
A--* oo 

= s(lo x I x R:,O,O, b) 
= sup (S(Uo, u, w) - bw) 

UOG/0 
UGI;WER 1 

= sup snp(s(uo, u, w) - bw) 
~/OG/O ;U~I ~O 

sup sb(uo, u) 
ZtO~I 0 ;U~I 
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Hence for this ensemble we have the same situation as for the restricted 
ensemble with sb(uo, u ) =  sup~(s(u0, u, w ) -  bw) replacing S(Uo, u) and 
gb(ao, a) = g(ao, a, b) replacing g(ao, a), because 

g~(ao, a) = g(ao, a, b) = sup((sup S(Uo, u, w) - bw) - aoUo - a.u) 
UO,U "tl) 

= sup(sb(uo, u) - aoUo - a.u) 

It is easy to check that s~ u) is concave, u.s.c, as S(Uo, u) before. C5) 
The same discussion as for the restricted ensemble applied to the 

functions s ~ and gb hence gives the result corresponding to Theorem 1 for 
the mixed ensemble: There is a unique limit of the mixed state fiA(x; L b) 
for any u corresponding to a in the duality between gb and s ~ if there are 
finitely many pure phases, {Pe, e =  1 .... , f},  for V = a . U +  b W a n d  the 
equations 

I f 

U ~ = ~ ( p e ,  Ubqe, i = 1  .... ,m ;  a = ~ q e  
1 1 

determine the qe uniquely. 
This result shows in particular that if we compare the restricted ensemble 

determined by u e R m corresponding to a ~ R TM having order parameters 
U1 ..... U, and the mixed ensemble determined by (ul ..... u,) and b W  = 
~ + ~  a~U~, then we get precisely the same limits of the state, since in both 
cases we are the same point V = a. U = ~$ asU~ + b W in B. That is, the 
restrictions not corresponding to the order parameters can be taken care of 
by a mixed ensemble correctly centered so that 

bW = ~ atU~. 
r ~ = l  

Example. In the Ising model defined before we have the following 
situation when a~ =/3 > t3o, a2 = O: U~A(x)= total interaction energy, 
Ug.A(x) = total magnetization. Since U1A(x) is even and U2A(x) is odd when 
x - ~ - -  x, we have 

(p:~, V~) = --gt'(a) (p~, U2) = +m*([3) 

[ - m * ~ )  is the right derivative g~..(a)]. Hence U2A(x) is the order param- 
eter, and the mixture is uniquely determined by the equations 

u2 = m*(fi)q+ - m*(fl)q_, 1 = q§ + q_ 

The remaining equation 

u~ = -g~'(13, O) 

defines the correspondence between u and a. 
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Our  results hence tell us that there is a unique limit o f  the microcanonical  
state for  ul = - g1'({3, 0), lu21 <<, m*(/3), and that  it is also the limit o f  the 
canonical  state determined by/3 and u2, lu2] ~< m* (/3). 

In  this model,  the fact that  in the canonical  ensemble the system consists 
o f  a mixture o f  two phases occupying macroscopic  regions having volume 
fractions q~ has been proved in two dimensions and for low temperature in 
the detailed investigations by Minlos and Sinai. (7) 

Remark.  The problem o f  the equivalence o f  different ensembles in a 
finite container A has also been considered, e.g., by T h o m p s o n  (~~ and 
Dobrushin  and Tirozzi. (~) They consider a restricted probability law defined 
on a "thin energy shell" IAI-IUA(x)  = uA = fixed and uA -+ u as A -+ ~ .  
The analysis becomes more  complicated in this case since one has to analyze 
the range o f  UA(x) as x ~ XA more  carefully; see Ref. 10, where equivalence 
o f  ensembles is obtained when there is no phase transition using " t h e r m o -  
d y n a m i c "  probabil i ty estimates for the law of  large numbers  as done here. 
In  Ref. l the equivalence between the canonical and grand  canonical en- 
sembles is considered for  a lattice gas, i.e., S = {0, I} and Ua(x) is equal to 
the number  o f  particles in A. The method  used is to estimate the conditional 
distribution o f  the state o f  a subsystem given that  UA(x) = uA in the grand 
canonical  ensemble using the local central limit theorem. This requires a 
more  delicate analysis, and again only the situation when there is no phase 
transit ion is treated. 
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